Evaluation of Acridine Orange Derivatives as DNA-Targeted Radiopharmaceuticals for Auger Therapy: Influence of the Radionuclide and Distance to DNA

نویسندگان

  • Edgar Pereira
  • Letícia do Quental
  • Elisa Palma
  • Maria Cristina Oliveira
  • Filipa Mendes
  • Paula Raposinho
  • Isabel Correia
  • João Lavrado
  • Salvatore Di Maria
  • Ana Belchior
  • Pedro Vaz
  • Isabel Santos
  • António Paulo
چکیده

A new family of 99mTc(I)- tricarbonyl complexes and 125I-heteroaromatic compounds bearing an acridine orange (AO) DNA targeting unit was evaluated for Auger therapy. Characterization of the DNA interaction, performed with the non-radioactive Re and 127I congeners, confirmed that all compounds act as DNA intercalators. Both classes of compounds induce double strand breaks (DSB) in plasmid DNA but the extent of DNA damage is strongly dependent on the linker between the Auger emitter (99mTc or 125I) and the AO moiety. The in vitro evaluation was complemented with molecular docking studies and Monte Carlo simulations of the energy deposited at the nanometric scale, which corroborated the experimental data. Two of the tested compounds, 125I-C5 and 99mTc-C3, place the corresponding radionuclide at similar distances to DNA and produce comparable DSB yields in plasmid and cellular DNA. These results provide the first evidence that 99mTc can induce DNA damage with similar efficiency to that of 125I, when both are positioned at comparable distances to the double helix. Furthermore, the high nuclear retention of 99mTc-C3 in tumoral cells suggests that 99mTc-labelled AO derivatives are more promising for the design of Auger-emitting radiopharmaceuticals than the 125I-labelled congeners.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Microdosimetry study of a multicellular model with mono-energetic electrons using Geant4-DNA simulation toolkit

Introduction: The goal of any type of radiation therapy in the treatment of tumors, in addition to destroying cancer cells, is to minimizing radiation to nearby healthy cells and thus reducing side damages. For this purpose, targeted radiation therapy (TRT) is more effective in treating of single cells or small cluster of cells. The main factor in the success of this method is...

متن کامل

Evaluation of the relative biological effectiveness of the Auger electrons produced during gadolinium neutron capture therapy using microdosimetric approach

Determination of the relative biological effectiveness (RBE) of Auger electrons is a challenging task in radiobiology. In this study, we have estimated the RBE of internal conversion (IC) and Auger electrons released during Gadolinium neutron capture reaction (GNCR) by means of biological weighting functions (BWFs) with microdosimetric approach. Regarding the different distribution of Gadoliniu...

متن کامل

Evaluation of cellular S-value of auger electrons emitting 111In radionuclide by Geant4 and its comparison with MCNP5 Monte Carlo codes and MIRD published data

Introduction: Now day Ionizing radiation has found increasing applications in cancer treatment. However, in the treatment different kinds and size of tumors especially metastatic and small size tumors, conventional methods of external radiation therapy are not common. In radionuclide therapy, the use of monoclonal antibodies has made it possible to achieve maximum dose to small size tumor and m...

متن کامل

Evaluation of DNA damage in a Her2+ cell line induced by an Auger-emitting immunoconjugate

Introduction: Auger electron based radioimmunotherapy (RIT) using 111In-DOTA-trastuzumab (111In-DOTA-antiHer2) feasibility was studied in vitro on a HER2/neu positive cell line, SkBr3. Methods:111In-DOTA-antiHer2 was prepared according to the optimized conditions followed by quality control tests including radioch...

متن کامل

Enhancing and verification of dose in external radiation therapy using Gd nanoparticles as a theranostic agent: A Monte Carlo simulation study

Introduction: Theranostics, in particular, the use of radionuclides with the capability of simultaneous imaging and treatment has opened new horizons in personalized treatment planning of targeted radiation therapy. In this approach, positive beta or gamma emitters are required for imaging and alpha, beta and Auger electrons for treatment purpose. On the other hand, studies hav...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017